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ABSTRACT

The seislet transform is a waveletlike transform that analyzes
seismic data by following varying slopes of seismic events
across different scales and provides a multiscale orthogonal ba-
sis for seismic data. It generalizes the discrete wavelet transform
(DWT) in the sense that the DWT in the lateral direction is sim-
ply the seislet transform with a zero slope. Our earlier work used
plane-wave destruction (PWD) to estimate smoothly varying
slopes. However, the PWD operator can be sensitive to strong
noise interference, which makes the seislet transform based on
PWD (PWD-seislet transform) occasionally fail in providing
a sparse multiscale representation for seismic field data. We
adopted a new velocity-dependent (VD) formulation of the

seislet transform, in which the normal moveout equation served
as a bridge between local slope patterns and conventional move-
out parameters in the common-midpoint domain. The VD slope
has better resistance to strong random noise, which indicated the
potential of VD seislets for random noise attenuation under 1D
earth assumption. Different slope patterns for primaries and
multiples further enabled a VD-seislet frame to separate primar-
ies from multiples when the velocity models of primaries and
multiples were well disjoint. We evaluated the results by apply-
ing the method to synthetic and field-data examples in which the
VD-seislet transform helped in eliminating strong random noise.
We performed synthetic and field-data tests that showed the ef-
fectiveness of the VD-seislet frame for separation of primaries
and peg-leg multiples of different orders.

INTRODUCTION

Signal and noise separation is a persistent problem in seismic
exploration. Sometimes, noise is divided into random noise and co-
herent noise. Many authors have developed effective methods of
eliminating random noise. Ristau and Moon (2001) compare several
adaptive filters, which they applied in an attempt to reduce random
noise in geophysical data. Karsli et al. (2006) apply complex-trace
analysis to seismic data for random-noise suppression, recom-
mending it for lowfold seismic data. Some transform methods were
also used to deal with seismic random noise, e.g., the discrete cosine
transform (Lu and Liu, 2007), the curvelet transform (Neelamani
et al., 2008), and the seislet transform (Fomel and Liu, 2010). If
seismic events are planar (lines in 2D data and planes in 3D data)
or locally planar, one can predict seismic events by using prediction
techniques in the f-x domain (Canales, 1984; Sacchi and Kuehl,
2001; Liu and Liu, 2013) or the t-x domain (Claerbout, 1992; Fo-
mel, 2002; Sacchi and Naghizadeh, 2009; Liu et al., 2015).

Multiple reflections are one kind of coherent noise, especially in
marine environments. Wave-equation-based algorithms for attenu-
ating multiples have rapidly developed since the 1990s and usually
consist of two steps, namely, multiple prediction (Verschuur et al.,
1992; Berkhout and Verschuur, 1997; Weglein et al., 1997) and
adaptive subtraction (Wang, 2003b; Guitton and Verschuur, 2004;
Fomel, 2009a). However, these algorithms need to calculate a full
wavefield, which is often a computational bottleneck for their ap-
plication, especially in the 3D case. Another popular class of de-
multiple techniques is based on variants of the Radon transform
(Foster and Mosher, 1992). Several revised Radon transforms have
been proposed for multiple attenuation (Hunt et al., 1996; Zhou and
Greenhalgh, 1996; Hargreave et al., 2003; Wang, 2003a). Radon-
transform-based methods often fail to provide accurate separation
because of their nonsparsity in characterizing seismic data, although
they can be improved by high-resolution methods (Sacchi and Ul-
rych, 1995; Herrmann et al., 2000; Trad et al., 2003). Despite their
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usual classification as noise, multiples can penetrate deeply enough
into the subsurface to illuminate the prospect zone. In this sense,
multiples can also be viewed as a viable signal, rather than noise
(Reiter et al., 1991; Youn and Zhou, 2001; Berkhout and Verschuur,
2006). Brown and Guitton (2005) propose a least-squares joint im-
aging of peg-leg multiples and primaries and discussed separation
of peg-leg multiples and primaries in prestack data.
In seismic data analysis, it is common to represent signals as

sums of plane waves by using multidimensional Fourier transforms.
The discrete wavelet transform (DWT) is often preferred to the Fou-
rier transform for characterizing digital images because of its ability
to localize events in time and frequency domains (Jensen and la
Cour-Harbo, 2001; Mallat, 2009). However, DWT may not be op-
timal for describing data that consist of plane waves. Waveletlike
transforms that explore directional characteristics of images have
found important applications in seismic imaging and data analysis
(Chauris and Nguyen, 2008; Herrmann et al., 2008). Fomel (2006)
investigate the possibility of designing a waveletlike transform tail-
ored specifically to seismic data and introduced it as the seislet
transform. Fomel and Liu (2010) further develop the seislet frame-
work and propose additional applications. The original 2D seislet
transform uses local data slopes estimated by plane-wave destruc-
tion (PWD) filters (Fomel, 2002; Chen et al., 2013a, 2013b). How-
ever, a PWD operator can be sensitive to strong interference, which
makes the seislet transform based on PWD (PWD-seislet transform)
occasionally fail in characterizing noisy signals.
We develop a velocity-dependent (VD) concept (Liu and Liu,

2013), where local slopes in prestack data are evaluated from
moveout parameters estimated by conventional velocity-analysis
techniques. We implement a VD-seislet transform and propose its
application for signal and noise separation. We expect the new VD-
seislet transform to provide better compression ability for reflection
events away from interference of strong random noise. We also pro-
vide an application of VD-seislet transform for separating primaries
from peg-leg multiples of different orders. We test the performance
of VD-seislet transform using synthetic and field data.

THEORY

Review of seislets

The seislet transform was introduced by Fomel (2006) and ex-
tended by Fomel and Liu (2010) and Liu and Fomel (2010). The
seislet construction is based on the DWT combined with seismic
data patterns, such as local slopes or frequencies. Fomel (2002) de-
velops a local PWD operation to predict local plane-wave events, in
which an all-pass digital filter is used to approximate the time shift
between two neighboring traces. The inverse operation, plane-wave
construction (Fomel and Guitton, 2006; Fomel, 2010), predicts a
seismic trace from its neighbors by following locally varying slopes
of seismic events and has been used for designing a PWD-seislet
transform, which is a particular kind of the seislet transforms with
slope pattern. Liu and Liu (2013) propose a VD slope as a pattern in
VD-seislet transform, in which the normal-moveout (NMO) equa-
tion serves as a bridge between local slopes and scanned NMO
velocities.
To define seislet transform, we follow the general recipe of the

lifting scheme for the DWT, as described by Sweldens and Schröder
(1996). The construction is reviewed in Appendix A. Designing pat-
tern-based prediction operator P and update operator U for seismic

data is a key factor in the seislet framework. In the seislet transform,
the basic data components can be different, e.g., traces or common-
offset gathers, and the prediction and update operators shift com-
ponents according to different patterns.
The prediction and update operators for a simple seislet transform

are defined by modifying the biorthogonal wavelet construction in
equations from Appendix A as follows:

P½e�k ¼ ðRðþÞ
k ½ek−1� þ Rð−Þ

k ½ek�Þ∕2 (1)

and

U½r�k ¼ ðRðþÞ
k ½rk−1� þ Rð−Þ

k ½rk�Þ∕4; (2)

where ek is even components of data at the kth transform scale, rk is
residual difference between the odd component of data o and its
prediction from the even component at the kth transform scale, the
details are shown in Appendix A, and RðþÞ

k and Rð−Þ
k are operators

that predict a component from its left and right neighbors corre-
spondingly by shifting them according to their patterns.
To get the relationship between prediction operator Rk and slope

pattern σ, the PWD operation (Fomel, 2002) can be defined in a
linear operator notation as

d ¼ DðσÞs; (3)

where seismic section s ¼ ½ s1 s2 ; : : : ; sN �T is a collection of
traces, d is the destruction residual. The general structure of D is
defined as follows (Fomel and Guitton, 2006; Fomel, 2010):

DðσÞ¼

2
666664

I 0 0 · · · 0

−R1;2ðσ1Þ I 0 · · · 0

0 −R2;3ðσ2Þ I · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · −RN−1;NðσN−1Þ I

3
777775;

(4)

where I stands for the identity operator, σi is the local slope pattern,
and Ri;jðσiÞ is an operator for prediction of trace j from trace i ac-
cording to the slope pattern σi. A trace is predicted by shifting it
according to the local seismic event slopes. Prediction of a trace
from a distant neighbor can be accomplished by simple recursion,
i.e., predicting trace k from trace 1 is simply given as

R1;k ¼ Rk−1;k; : : : ;R2;3R1;2: (5)

If sr is a reference trace, then the prediction of trace sk is Rr;ksr.
The predictions need to operate at different scales, which, in this

case, mean different separation distances between the data elements,
e.g., traces in PWD-seislet transform. Equations 1 and 2, in combi-
nation with the forward and inverse lifting schemes, provide a com-
plete definition of the seislet framework. For different kinds of
slope-based seislets, one needs to define the corresponding slope
pattern σ.
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Velocity-dependent-slope pattern for primary reflec-
tions

The kinematic description of a seismic event is an essential step
for several developments in seismic data processing. Local slope is
one important kinematic pattern for seismic data in the time-space
domain. PWD provides a constructive algorithm for estimating lo-
cal slopes (Claerbout, 1992; Fomel, 2002; Schleicher et al., 2009;
Chen et al., 2013a, 2013b) and can combine with a seislet frame-
work to implement the PWD seislet. The local slant stack (Ottolini,
1983a) is another standard tool for calculating slopes.
Under a 1D earth assumption, one can consider the classic hyper-

bolic model of primary reflectionmoveouts at near offsets (Dix, 1955):

tðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 þ

x2

v2ðt0Þ

s
; (6)

where t0 is the zero-offset traveltime, tðxÞ is the corresponding
primary traveltime recorded at offset x, and vðt0Þ is the stacking, or
root-mean-square (rms) velocity, which comes from a standard veloc-
ity scan. As follows from equation 6, the traveltime slopes σ ¼ dt∕dx
in common-midpoint (CMP) gathers are given by

σðt; xÞ ¼ x
tðxÞv2ðt0; xÞ

: (7)

This calculation is reverse to the one used in NMO by velocity-inde-
pendent imaging (Ottolini, 1983b; Fomel, 2007b). To calculate local
slopes of primaries, we need to know vðt0; xÞ at each time-space
location (t0; x). This can be accomplished by simultaneously scanning
t0 and vðt0; xÞ according to the hyperbolic NMO equation at each x-
coordinate position or by time warping. We use the time warping
algorithm to calculate vðt0; xÞ; the time-warping performs mapping
between different coordinates, if one has sampled functions fðxÞ and
yðxÞ, the mapping operation finds sampled fðyÞ (Burnett and Fomel,
2009; Casasanta and Fomel, 2011).
After the VD-slope pattern of primaries is calculated, we can de-

sign pattern-based prediction and update operators Rk by using
plane-wave construction for the VD-seislet transform to represent
only primary reflections. When VD-seislet transform is applied to a
CMP gather, random noise spreads over different scales whereas the
predictable reflection information gets compressed to large coeffi-
cients at small scales. A simple thresholding operation can easily
remove small coefficients. Finally, applying the inverse VD-seislet
transform reconstructs the signal while attenuating random noise.

Velocity-dependent-slope pattern for peg-leg multiples

In a laterally homogeneous model, the NMO equation 6 flattens
primary events on a CMP gather with offset x and time t to its zero-
offset traveltime t0. Brown and Guitton (2005) use an analogous
NMO equation for peg-leg multiples under a locally 1D earth
assumption. For example, a first-order peg-leg can be kinematically
approximated by a pseudoprimary with the same offset but with an
additional zero-offset traveltime τ. The NMO equation for an mth-
order peg-leg multiple is generalized to

tmðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0 þmτÞ2 þ x2

v2mðt0Þ

s
; (8)

where tmðxÞ is the corresponding multiple traveltime recorded at
offset x and the effective rms velocity vm is defined according to
Dix’s equation as

vmðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0v2ðt0Þ þmτv2ðτÞ

t0 þmτ

s
: (9)

In marine seismic data, vðτÞ is a constant water velocity, and it as-
sumes that we are able to pick zero-offset traveltime τ of the water
bottom. According to the definition of slopes for primaries (equa-
tion 7), slopes for peg-leg multiples can be calculated analogously
by

σmðt; xÞ ¼
x

tmðxÞv2mðt0; xÞ
: (10)

Equation 10 provides the estimation of multiple slopes, which we
use to define VD-seislet frame for representing peg-leg multiples of
different orders.

Separation of primaries and peg-leg multiples using
Velocity-dependent-seislet frame

Once the VD-seislet transform is defined, it can be applied to
analyze signals composed of multiple wavefields, e.g., primaries
and multiples of different orders. If a range of slopes are chosen
and a VD-seislet transform is constructed for each of them, then all
the transforms together will constitute an overcomplete representa-
tion. Mathematically, if Fi is the VD-seislet transform for the ith
slope pattern (corresponding to primaries or peg-leg multiples of
different orders), then, for any data vector d,

XN
i¼1

kFidk2 ¼
XN
i¼1

dTFT
i Fid ¼

XN
i¼1

kdk2 ¼ Nkdk2; (11)

which means that all transforms taken together constitute a tight
frame with constant N (Mallat, 2009).
Because of its overcompleteness, a frame representation for a

given signal is not unique. To assure that different wavefield com-
ponents do not leak into other parts of the frame, it is advantageous
to use a sparsity-promoting inversion (Fomel and Liu, 2010). We
use a nonlinear shaping-regularization scheme (Fomel, 2008) and
define sparse decomposition as an iterative thresholding process
(Daubechies et al., 2004) as

f̂kþ1 ¼ S½Fdþ ðI − FBÞf̂k� (12)

and

fkþ1 ¼ fk þ Fd − FBf̂kþ1; (13)

where fk are coefficients of the seislet frame at kth iteration, f̂k is an
auxiliary quantity, S is a soft thresholding operator, F and B are the
frame construction and deconstruction operators:

F ≡ ½F1 F2 ; : : : ; FN �T (14)

and
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B ≡ ½F−1
1 F−1

2 ; : : : ; F−1
N �: (15)

Equation 12 converges to the solution of a least-squares optimi-
zation problem regularized by a sparsity constraint:

min
f
kBf − dk22 þ ϵkfk1; (16)

where the first term is the L2 norm of the data misfit, and the second
term is the L1 norm of the model, which promotes sparsity.
Assuming that equation 12 converges, one can express its con-

vergence point as

f̂ ¼ ½Iþ SðFB − IÞ�−1SFd; (17)

which is precisely the shaping regularization equation proposed by
Fomel (2007a). Iterations in equations 12 and 13 start with f0 ¼ 0
and f̂0 ¼ Fd and are related to the linearized Bregman iteration (Cai
et al., 2009), which converges to the solution of the constrained
minimization problem:

min
f
kfk1 s:t: Bf ¼ d: (18)

Separated wavefield can be calculated by di ¼ BMifη, where η is
iteration number, and masking operatorMi is a diagonal matrix that
is given as

Mi¼

2
666666664

0 ··· ··· ··· ··· ··· 0
··· ··· ··· ··· ··· ··· ···
0 ··· 0 0 0 ··· 0
0 ··· 0 Ii;i 0 ··· 0
0 ··· 0 0 0 ··· 0
··· ··· ··· ··· ··· ··· ···
0 ··· ··· ··· ··· ··· 0

3
777777775
N×N

; (19)

and di corresponds to the signal of interest (e.g., primaries or
multiples of a selected order). One needs to calculate all patterns
for primaries and multiples, and then sparse decomposition (equa-
tions 12 and 13) will separate primaries from multiples. In practice,

a small number of iterations is usually sufficient
for convergence and for achieving model sparse-
ness and data recovery. However, similar to Radon
transform, the proposed method needs an as-
sumption that primaries and multiples correspond
to different velocity models.

SYNTHETIC DATA EXAMPLES

Validation of slope estimation and
random noise elimination

A simple synthetic example is shown in Fig-
ure 1a. The synthetic data were generated by ap-
plying inverse NMO with time-varying velocities,
and they represent perfectly hyperbolic events.
Figure 1b shows local event slopes measured from
the data using PWD algorithm (Fomel, 2002).
PWD provides an accurate slope field for noise-
free data. Figure 2a and 2b shows the data after
adding normally distributed random noise and lo-
cal slopes from PWD, respectively. Compared

a) b)

Figure 1. (a) Synthetic data and (b) slopes calculated by PWD.

a) b)Figure 2. (a) Synthetic noisy data and (b) slopes
calculated by PWD.

WD120 Liu et al.

D
ow

nl
oa

de
d 

10
/2

0/
15

 to
 5

9.
72

.9
7.

19
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



a) b) c)

Figure 4. (a) PWD-seislet coefficients, (b) VD-seislet coefficients, and (c) transform coefficients sorted from large to small, normalized, and
plotted on a decibel scale (solid line — VD-seislet transform. Dashed line — PWD-seislet transform).

a) b) Figure 3. (a) Velocity scanning (dashed line: exact
velocity, solid line: picked velocity) and (b) VD
slopes.

a) b) Figure 5. Denoising result using different trans-
forms. (a) PWD-seislet transform and (b) VD-seis-
let transform.
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with Figure 1b, PWD fails in finding exact slope field because of
strong random noise. Next, we calculate slopes using NMO velocities
from velocity scan. Picked NMO velocities (Figure 3a) are close to
the exact velocity because velocity scan is less sensitive to strong
random noise. As a consequence, VD slopes calculated from equa-
tion 7 provide a more accurate result (Figure 3b).
A direct application of the seislet transform is denoising. We apply

PWD-seislet and VD-seislet transforms on the noisy data (Figure 2a).
Figure 4a and 4b shows the transform coefficients of PWD-seislet
and VD-seislet, respectively. The hyperbolic events are compressed
in both of the transform domains. Notice that the PWD-seislet coef-
ficients get more concentrated at a small scale than those of the VD-
seislet because part of the random noise is also compressed along the
inaccurate PWD slopes. Meanwhile, random noise gets spread over
different scales in the VD-seislet domain, whereas the predictable
reflection information gets compressed to large
coefficients at small scales, which makes signal
and noise display different amplitude characteris-
tics. Figure 4c shows a comparison between the
decay of coefficients sorted from large to small
in the PWD-seislet transform and the VD-seislet
transform. Seislet transform can compress the
seismic events with coincident wavelets; if the
slopes of the reflections are correct, the sparse
large coefficients only correspond to the stacked
reflection events. However, when the slopes of
the reflections are not accurate, the stacked ampli-
tude values for inconsistent wavelets will create
more coefficients with smaller values. VD slopes
are less affected by strong random noise than are
PWD slopes; therefore, they show a faster decay
of the VD-seislet coefficients. A simple threshold-
ing method can easily remove the small coeffi-
cients of random noise. Figure 5a and 5b dis-
plays the denoising results by using PWD-seislet
transform and VD-seislet transform, respectively.
The events after PWD-seislet transform denoising
show serious distortion whereas VD-seislet trans-
form produces a reasonable denoising result. For

numerical comparison, we use the signal-to-noise ratio (S/N) defined
as S∕N ¼ 10 log10ksk22∕ks − ŝk22, where s is the noise-free signal and
ŝ is the denoised signal. The original S/N of the noisy data (Figure 2a)
is −12.53 dB. The S/N of the denoised results using the PWD-seislet
transform (Figure 5a) and the VD-seislet transform (Figure 5b) are
0.53 and 1.94 dB, respectively.

Separation of primaries and peg-leg multiples

Next, we use a synthetic CMP gather (Figure 6a) to test the sep-
aration of primaries and peg-leg multiples by VD-seislet frame. This
gather was generated by Lumley et al. (1994) using Haskell-Thomp-
son elastic modeling and a well log from the Mobil amplitude-varia-
tion-with-offset (AVO) data set (Keys and Foster, 1998). The gather
contains primaries and water-bottom multiples of different orders.

a) b)Figure 6. (a) Synthetic model and (b) velocity
trends of primaries and multiples.

a) b)

Figure 7. (a) VD slopes and (b) VD-seislet coefficients.
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To separate peg-leg multiples from primaries, we transform the
data using VD-seislet frame by involving different VD slope fields
(Figure 7a) according to equations 7 and 10. The primary velocities
and calculated velocities of different-order peg-leg multiples are
shown in Figure 6b. The estimated curves of multiple velocities in-
dicate accurate trends in the velocity spectra. The proposed method
uses a nonlinear shaping-regularization scheme (equations 12 and
13) to separate different wavefield components, which are shaped to
be sparse in the corresponding VD-seislet frame domain (Figure 7b).
In this example, the pattern number N is selected to be four in equa-
tion 11. The separated wavefields are shown in Figure 8 and display
reasonably accurate separation results.

FIELD DATA EXAMPLES

We test VD-seislet denoising by using a field-land data pro-
vided by Geofizyka Torun Sp. Z.o.o, Poland from FreeUSP (2015)

website. Figure 9a shows the CMP gathers after removing most of
the ground roll. The strong random noise makes reflection events
hardly visible. However, velocity analysis from equation 6 can still
produce a reasonable velocity field. Equation 7 converts rms
velocity to seismic pattern (Figure 9b), which displays the hyper-
bolic slopes from negative to positive in CMP gathers and varying
slopes in common-offset section. VD-seislet transform uses the
slopes to compress reflections along offset axis. Figure 9c shows
the VD-seislet coefficients, in which the small dynamic range of
seislet coefficients implies a good compression ratio. If we choose
the significant coefficients at the coarse scale, e.g., scale < 8, and
zero-out difference coefficients at the finer scales, the inverse
transform effectively removes incoherent noise from the gathers
(Figure 9d).
Next, we test the proposed algorithm to separate multiwavefields

on a single CMP gather from the Viking Graben (Mobil AVO) data
set (Keys and Foster, 1998). The field data are shown in Figure 10a.

a)

b)

c)

d)

Figure 8. Separated wavefields. (a) Primaries,
(b) first-order multiples, (c) second-order multi-
ples, and (d) third-order multiples.
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a)

b)

c)

d)

Figure 9. (a) Field CMP gathers, (b) VD slopes, (c) VD-seislet coefficients, and (d) denoising result using VD-seislet transform.

a) b)Figure 10. (a) Field CMP gather and (b) velocity
trends of primaries and multiples.
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We pick the primary velocities by muting spectra energy of multiples.
Multiple rms velocities with different orders (equation 9) follow
the pseudoprimary NMO equation 8. The velocity spectra of primar-
ies and multiples are shown in Figure 10b. Equations 7 and 10 con-
vert velocities to slopes, which help the VD-seislet frame separate
primaries from different-order peg-leg multiples. (We only display
three orders.) Figure 11 displays the separated primaries and differ-
ent-order multiples. The corresponding velocity spectra are shown in
Figure 12. After separating different wavefields, the velocity spectra
confirm that the signals get concentrated around their respective
trends. All results are reproducible in the Madagascar open-source
software environment (Fomel et al., 2013).

DISCUSSION

What are the limitations of the proposed algorithms? First, the
VD-seislet transform may have difficulties in dealing with nonhy-
perbolic moveouts. However, it is possible to extend it to the non-

hyperbolic moveout equation, which would provide the possibility
to handle large offsets and anisotropy (Fomel and Grechka, 2001).
Next, the velocity scan occasionally raises additional errors; it is
possible to predenoise followed by PWD-seislet transform, but
the results depend on careful parameter selection for preprocessing
methods. Compared with PWD-seislet transform, VD-seislet trans-
form provides more accurate representation for seismic events with
class II AVO anomalies (Rutherford and Williams, 1989) that cause
seismic amplitudes to go through a polarity reversal. The PWD-
seislet transform may fail because PWD slopes depend on the am-
plitude value of the seismic data; however, VD slopes are more ac-
curate by using advanced velocity analysis, e.g., AB semblance
(Fomel, 2009b). Finally, the proposed method works for the veloc-
ity models in which primaries and multiples are well disjointed, for
instance, it may fail in the case of shallow water multiples. There-
fore, the current VD-seislet transform provides an alternative tool
for analyzing CMP gathers with strong random noise in structurally
simple areas or disjoint peg-leg multiples.

a) c)

b) d)

Figure 11. Separated wavefields. (a) Primaries,
(b) first-order multiples, (c) second-order multi-
ples, and (d) third-order multiples.
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CONCLUSIONS

We have introduced the VD-seislet transform, a new domain for
analyzing prestack reflection data in CMP domain. The new trans-
form is able to compress reflection data away from strong random
noise. The NMO equation serves as a bridge between local slopes
and scanned velocities that are not sensitive to strong random noise
and aliasing. We also used the explicit relationship between slopes
and velocities of primary and multiple events to extend VD-seislet
transform to a VD-seislet frame. We have shown example applica-
tions of VD-seislet transform to signal and noise separation. Other
traditional processing tasks such as data interpolation can also be
easily defined in the VD-seislet domain.
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APPENDIX A

THE LIFTING SCHEME FORDISCRETEWAVELET
TRANSFORM

The lifting scheme (Sweldens, 1995) provides a convenient ap-
proach for defining wavelet transforms by breaking them down into
the following steps:

1) Divide data into even and odd components e and o.
2) Find a residual difference r between the odd component and its

prediction from the even component:

r ¼ o − P½e�; (A-1)

where P is a prediction operator.

a)

b)

c)

d)

Figure 12. Velocity spectra of different wavefields.
(a) Primaries, (b) first-order multiples, (c) second-
order multiples, and (d) third-order multiples.
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3) Find a coarse approximation c of the data by updating the even
component as

c ¼ eþ U½r�; (A-2)

where U is an update operator.
4) The coarse approximation c becomes the new data, and the se-

quence of steps is repeated at the next scale.

The Cohen-Daubechies-Feauveau (CDF) 5/3 biorthogonal wave-
lets (Cohen et al., 1992) are constructed by making the prediction
operator a linear interpolation between two neighboring samples as

P½e�k ¼ ðek−1 þ ekÞ∕2; (A-3)

and by constructing the update operator to preserve the running
average of the signal (Cohen et al., 1992) as follows:

U½r�k ¼ ðrk−1 þ rkÞ∕4: (A-4)

Furthermore, one can create a high-order CDF 9/7 biorthogonal
wavelet transform by using CDF 5/3 biorthogonal wavelets twice
with different lifting operator coefficients (Lian et al., 2001). The
transform is easily inverted according to reversing the steps above
as follows:

1) Start with the coarsest scale data representation c and the coars-
est scale residual r.

2) Reconstruct the even component e by reversing the operation in
equation A-2 as follows:

e ¼ c − U½r�. (A-5)

3) Reconstruct the odd component o by reversing the operation in
equation A-1 as follows:

o ¼ rþ P½e�. (A-6)

4) Combine the odd and even components to generate the data at
the previous scale level and repeat the sequence of steps.
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