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Seismic data analysis using local time-frequency decomposition
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ABSTRACT
Many natural phenomena, including geologic events and geophysical data, are fun-
damentally nonstationary - exhibiting statistical variation that changes in space and
time. Time-frequency characterization is useful for analysing such data, seismic traces
in particular.

We present a novel time-frequency decomposition, which aims at depicting the
nonstationary character of seismic data. The proposed decomposition uses a Fourier
basis to match the target signal using regularized least-squares inversion. The decom-
position is invertible, which makes it suitable for analysing nonstationary data. The
proposed method can provide more flexible time-frequency representation than the
classical S transform. Results of applying the method to both synthetic and field data
examples demonstrate that the local time-frequency decomposition can characterize
nonstationary variation of seismic data and be used in practical applications, such as
seismic ground-roll noise attenuation and multicomponent data registration.
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INTRODUCTION

Geological events and geophysical data often exhibit funda-
mentally nonstationary variations. Therefore, time-frequency
characterization of seismic traces is useful for geophysical data
analysis. A widely used method of time-frequency analysis is
the short-time Fourier transform (STFT) (Allen 1977). How-
ever, the window function limits the time-frequency resolution
of STFT (Cohen 1995). An alternative is the wavelet trans-
form, which expands the signal in terms of wavelet functions
that are localized in both time and frequency (Chakraborty
and Okaya 1995). However, because a wavelet family is built
by restricting its frequency parameter to be inversely pro-
portional to the scale, expansion coefficients in a wavelet
frame may not provide precise enough estimates of the fre-
quency content of waveforms, especially at high frequencies
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(Wang 2007). Therefore, Sinha, Routh and Anno (2009) and
Sinha et al. (2005) developed a time-frequency continuous-
wavelet transform (TFCWT) to describe a time-frequency map
more accurately than the conventional continuous-wavelet
transform (CWT). The S transform (Stockwell Mansinha and
Lowe 1996) is another generalization of STFT, which extends
CWT and overcomes some of its disadvantages. Pinnegar and
Mansinha (2003) developed a general version of the S trans-
form by employing windows of arbitrary and varying shape.
The clarity of the S transform is worse than the Wigner-Ville
distribution function (Wigner 1932), which achieves a higher
resolution but is seldom used in practice because of its well-
known drawbacks, such as interference and aliasing. For this
reason, Li and Zheng (2008) provided a smoothed Wigner-
Wille distribution (SWVD) to reduce the interference caused
by the cross-term interference. The matching pursuit method
is yet another approach to represent the time-frequency sig-
nature (Liu and Marfurt 2007; Wang 2007, 2010). Match-
ing pursuit involves several parameters and is a relatively
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expensive method. There are some other approaches to spec-
tral decomposition. Castagna and Sun (2006) compared sev-
eral different spectral-decomposition methods.

Liu, Fomel and Chen(2009, 2011) recently proposed a new
method of time-varying frequency characterization of nonsta-
tionary seismic signals, which is based on regularized least-
squares inversion. In this paper, we expand the method of
Liu et al. (2011) by designing an invertible nonstationary
time-frequency decomposition — local time-frequency (LTF)

decomposition and its extensions — local time-frequency-

wavenumber (LTFK) and local space-frequency-wavenumber

(LXFK) decompositions. The key idea is to minimize the error
between the input signal and all its Fourier components simul-
taneously using regularized nonstationary regression (Fomel
2009) with control on time resolution. This approach is
generic, in the sense that it is possible to combine other
basis functions, eg., fractional splines, with regularization
(Herrmann 2001). Although there is an iterative inversion
inside the algorithm, one can use LTF decomposition as
an invertible ‘black box’ transform from time to time-
frequency, similar in properties to the S transform. The pro-
posed decompositions can provide local time-frequency or
space-wavenumber representations for common seismic data-
processing tasks. We test the new method and compare it with
the S transform by using a classical benchmark signal with two
crossing chirps. The proposed LTF decomposition appears to
provide higher resolution in both time and frequency when
appropriate parameters of the shaping regularization opera-
tor (Fomel 2007b) are used to constrain the time resolution.
Examples of ground-roll attenuation and multicomponent im-
age registration demonstrate that the method can be effective
in practical applications.

THEORY

Local time-frequency (LTF) decomposition

The Fourier series is by definition an expansion of a function
in terms of a sum of sines and cosines. Letting a causal signal,
f (x), be in the range of [0, L], the Fourier series of the signal
is given by

f (x) = a0

2
+

∞∑
n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
. (1)

The notion of a Fourier series can also be extended to com-
plex coefficients as follows:

f (x) =
∞∑

n=−∞
An�n(x), (2)

where An are the Fourier coefficients and �n(x) = ei(2πnx/L).

Nonstationary regression allows the coefficients An to
change with x. In linear notation, An(x) can be obtained by
solving the least-squares minimization problem

min
An

∥∥∥ f (x) −
∑

n

An(x)�n(x)
∥∥∥2

2
. (3)

The minimization problem is ill posed because there are a lot
more unknown variables than constraints. Our solution is to
include additional constraints in the form of regularization,
which limits the allowed variability of the estimated coef-
ficients (Fomel 2009). Tikhonov’s regularization (Tikhonov
1963) can modify the objective function to

Ãn(x) = arg min
An

∥∥∥ f (x) −
∑

n

An(x)�n(x)
∥∥∥2

2

+ ε2
∑

n

∥∥∥D[An(x)]
∥∥∥2

2
, (4)

where D is the regularization operator and ε is a scaling pa-
rameter. One can define D, for example, as a gradient operator
that penalizes the roughness of An(x).

We use shaping regularization (Fomel 2007b) instead of
Tikhonov’s regularization to constrain the least-squares in-
version. Shaping is a general method for imposing constraints
by explicit mapping the estimated model to the desired model,
eg., smooth model. Instead of trying to find and specify an
appropriate regularization operator, the user of the shaping-
regularization algorithm specifies a shaping operator, which
is often easier to design.

The absolute value of time-varying coefficients |An(x)| pro-
vides a time-frequency representation and equation (2) pro-
vides the inverse calculation. In the discrete form, a range
of frequencies can be decided by the Nyquist frequency
(Cohen 1995) or by the user’s assignment. In a somewhat
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Figure 1 Schematic illustration of LTFK decomposition (a) and LXFK
decomposition (b) by using the LTF decomposition.
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Figure 2 Synthetic signal with two crossing chirps (a) and time-
frequency spectra from the S transform (b).

Figure 3 Time-frequency spectra from LTF decomposition with dif-
ferent sizes of the smoothing radius. Smoothing radius of 7 points (a)
and smoothing radius of 14 points (b).

different approach, Liu et al. (2009) minimized the error be-
tween the input signal and each frequency component inde-
pendently. Their algorithm and the proposed algorithm are
equivalent when the decomposition is stationary (or using a
very large shaping radius), because they both reduce to the
regular Fourier transform. In the case of nonstationarity, their
approach does not guarantee invertability, because it pro-
cesses each frequency independently.

Figure 4 Field land data (a), denoised result using LTF decomposition
(b) and difference between raw data (Fig. 4a) and denoised result using
LTF decomposition (Fig. 4b) (c).
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Figure 5 Local T-X-F spectra (a) and filter mask in the T-X-F
domain (b).

Local t-f -k (LTFK) and local x-f -k (LXFK) decompositions

Askari and Siahkoohi (2008) proposed t-f -k and x-f -k trans-
forms that are based on the S transform. We define analogous
LTFK and LXFK decompositions by using the LTF decompo-
sition. The new decompositions can be used to design general
time-varying or space-varying FK filters. The key steps of the
algorithm are illustrated schematically in Fig. 1.

Example of time-frequency characterization

A simple 1-D example is shown in Fig. 2. The input signal in-
cludes two crossing chirp signals and displays nonstationary
characteristics (Fig. 2a). We applied the LTF decomposition to
obtain a time-frequency distribution. Figure 3(a) shows that
the proposed method recovers the linear frequency trend with
high resolution in both time and frequency. In comparison,

Figure 6 Local F-K-T spectra (a) and filter mask in the F-K-T
domain (b).

the S transform has high resolution near low frequencies but
loses resolution at high frequencies (Fig. 2b). Figure 3(b) dis-
plays the LTF decomposition using a different smoothing pa-
rameter (14 points) to demonstrate adjustable time-frequency
characteristics of the LTF decomposition.

APPLICATION TO GROUND-ROLL
ATTENUATION

Seismic data always consist in signal and noise components.
The time-frequency denoising algorithm is an effective method
for handling noise problems (Elboth, Presterud and Her-
mansen 2010). Ground roll is the main type of coherent
noise in land seismic surveys and is characterized by low fre-
quencies and high amplitudes. Current processing techniques
for attenuating ground roll include frequency filtering, FK
filtering (Yilmaz 2001), radon transform (Liu and Marfurt
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Figure 7 Local F-K-X spectra (a) and filter mask in the F-K-X
domain (b).

2004), wavelet transform (Deighan and Watts 1997), and the
curvelet transform (Yarham and Herrmann 2008). Askari and
Siahkoohi (2008) applied the S transform to ground-roll at-
tenuation. Here, we propose a similar strategy, except that we
are applying the proposed local time-frequency decomposition
instead of the S transform.

We applied our methods to a land shot gather contami-
nated by nearly radial ground roll (Fig. 4a). All time-domain
images are obtained after automatic gain control (AGC). We
applied the forward LTF decomposition to each trace to gen-
erate a time-frequency cube (Fig. 5a). Note that the ground
roll is distributed at localized time-space (left-down section
of Fig. 5a) and time-frequency (right-down section of Fig. 5a)
positions. The LTF decomposition is flexible, due to its ad-
justable time-frequency resolution. Therefore, we designed a
simple muting filter to remove the noise components local-
ized in both frequency and space (Fig. 5b). The inverse LTF

Figure 8 Denoised results using different local decompositions. LTFK
decomposition (a) and LXFK decomposition (b).

decomposition brings the separated signal back to the origi-
nal domain (Fig. 4). Figure 4(c) shows the difference between
raw data (Fig. 4a) and the denoised result using LTF decom-
position (Fig. 4b). It is possible to design more complicated
but more powerful masks. Without a time-space mask, our
method of simply muting selected frequencies would reduce
to band-pass filtering.

The LTFK and LXFK decompositions generate data in
different domains (Figs. 6a and 7a), which show the trend
of ground-roll noise in the frequency-wavenumber sections.
Simple frequency-wavenumber masks (Figs. 6b and 7b) can
eliminate ground-roll noise in the decomposition domains.
The recovered signals using the inverse LTFK and LXFK de-
compositions produce similar results (Fig. 8a, b respectively).
Furthermore, different decompositions can be cascaded to
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Figure 9 Denoised data using different methods (shown for compar-
ison). High-pass filter (a) and FK filter (b).

improve their denoising abilities. For comparison, we used
a simple high-pass filter. Figure 9(a) shows that the high-pass
filter fails in removing noise, a larger filter window can dam-
age the seismic signal. Another choice is FK filtering (Fig. 9b),
which cannot remove the low-frequency part of ground-roll
noise. The result is similar to that of the LXFK decomposi-
tion (Fig. 8b) but the proposed method tends to remove more
noise than the standard FK filter (especially near location of
time 2.7s and offset 1.2km in Figs. 8b and 9b) because of the
decomposition’s locality and its more flexible design. Radial
trace (RT) transform is another approach to deal with ground-
roll noise, which is a simple geometric re-mapping method of
a seismic trace gather. Idealized ground roll is transformed
to small temporal frequency by the RT transform and can be
eliminated by applying the RT transform, followed by high-

Figure 10 Denoised result by using the RT transform with the high-
pass filter (a) and cascading LXFK and LTF decompositions (b).

pass filtering and the inverse RT transform (Claerbout 1983;
Henley 1999). Figure 10(a) shows that the RT transform per-
forms better than the high-pass filter or the FK filter. How-
ever, it still has trouble separating signal and noise near the
source. Figure 10(b) shows the denoised result after cascading
the proposed LXFK and LTF decompositions, which achieved
the best result in this case (especially at locations around the
bottom left corner).

APPLICATION TO MULTICOMPONENT
D A T A R E G I S T R A T I O N

Multicomponent seismic data provide additional informa-
tion about subsurface physical characteristics (Stewart et al.

2003). Joint interpretation of multiple image components
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Figure 11 PP (a) and SS (b) images from a nine-component land
survey.

depends on our ability to identify and register reflection events
from similar reflectors. Fomel and Backus (2003) and Fomel
et al. (2005) proposed a multistep approach for registering
PP and PS images, and identified spectral differences between
PP and PS images as a major problem that prevents an easy
automatic registration. The new LTF decomposition can pro-
vide a natural domain for nonstationary spectral balancing of
multicomponent images.

Figure 11a, b shows seismic images from compressional (PP)
and shear (SS) reflections obtained by processing a land nine-
component survey (Fomel 2007a). One can use ‘image warp-
ing’ (Wolberg 1990) to squeeze the SS image to PP reflection

Figure 12 Three ‘nails’ for PP and SS time correlation identified by
initial image interpretation and fitted to a straight line.

time and make the two images display in the same coordinate
system. Using initial interpretation and well-log analysis, we
identified three individual correlation ‘nails’ in the terminol-
ogy of DeAngelo et al. (2003). Fitting a straight line through
the nails suggests a constant initial VP/VS ratio (Fig. 12). For
illustration of spectral balancing, we select the 300th trace
in the PP and SS images and then warp (squeeze) SS time
to PP time by using the initial VP/VS ratio. The correspond-
ing local time-frequency spectra are shown in Fig. 13(a, b).
The SS-trace frequency appears higher in the shallow part
of the image because of a relatively low S-wave velocity but
lower in the deeper part of the image because of the appar-
ently stronger attenuation of shear waves. Spectral balanc-
ing essentially smoothes the high-frequency image to match
the low-frequency image. The LTF decompositions provide
a nonstationary domain for time-varying spectral balancing.
Our spectral balancing works as follows. For each time slice
in LTF domains, we use three steps:
1. match the PP and SS spectra by least-squares fitting with

Ricker spectra

Ri ( f ) = A2
i

f 2

f 2
i

e− f 2/ f 2
i , (5)

where f is frequency axis and obtain the dominant frequencies
f 1 and f 2 (f 2 > f 1) and the corresponding amplitudes A1 and
A2.
2. use the estimated Ricker parameters to design a matching

Gaussian filter

G( f ) = A1 f 2
2

A2 f 2
1

e f 2(1/ f 2
2 −1/ f 2

1 ). (6)
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Figure 13 Time-frequency spectra in the LTF decomposition domain. PP before balancing (a), SS after initial warping (b) PP after balancing (c),
and warped SS after balancing (d).

Figure 14 Three stages for PP and SS registration. Initial warping (top), nonstationary spectral balancing (middle) and final registration after
warping scan (bottom).
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Figure 15 Interleaved traces from PP and SS images before (a) and
after (b) multicomponent registration.

3. shrink the high-frequency spectra to match the low-
frequency spectra by applying the Gaussian filter.

The LTF spectra of PP and warped SS trace after nonstation-
ary spectral balancing are shown in Fig. 13(a, b), respectively,
which shows a reasonable similarity between the PP and SS
traces for both shallow and deep parts. The inverse LTF de-
composition reconstructs balanced PP and SS waveforms in
the time domain. Figure 14 displays the PP trace, SS trace,
and the difference between the two traces in the time domain,
which are compared for three stages of automatic data regis-
tration (Fomel et al. 2005). The residual γ scan is an algorithm
for rapid scanning of the field of possible registrations. After
applying the residual γ scan to update the VP/VS ratio, the
difference between balanced PP and registered SS traces is
substantially reduced compared to the initial registration. The
final registration result is visualized in Fig. 15, which shows
interleaved traces from PP and SS images before and after reg-

istration. The alignment of the main seismic events (especially
those at locations ‘A’ and ‘B’) is an indication of successful
registration.

CONCLUSION

We have introduced a new time-frequency decomposition
that uses regularized nonstationary regression with Fourier
bases to represent the time-frequency variation of nonsta-
tionary signals. The decomposition is invertible and provides
an explicit control on the time and frequency resolution of
the time-frequency representation. Experiments with synthetic
and field data show that the proposed local time-frequency de-
composition can depict nonstationary variation and provide a
useful domain for practical applications, such as ground-roll
noise attenuation and multicomponent image registration.
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